YACC(1) YACC(1)
NAME
yacc - yet another compiler-compiler (Limbo version)
SYNOPSIS
yacc [ option ... ] grammar
DESCRIPTION
Yacc converts a context-free grammar and translation code
into a set of tables for an LR(1) parser and translator.
The grammar may be ambiguous; specified precedence rules are
used to break ambiguities.
The output from yacc is a Limbo module y.tab.b containing
the parse function yyparse which must be provided with a
YYLEX adt providing the parser access to a lexical analyser
routine lex(), an error routine error(), and any other con-
text required.
The options are
-o output Direct output to the specified file instead of
y.tab.b.
-Dn Create file y.debug, containing diagnostic mes-
sages. To incorporate them in the parser, give
an n greater than zero. The amount of diagnostic
output from the parser is regulated by value n:
1 Report errors.
2 Also report reductions.
3 Also report the name of each token returned
by `yylex'.
-v Create file y.output, containing a description of
the parsing tables and of conflicts arising from
ambiguities in the grammar.
-d Create file y.tab.m, containing the module decla-
ration for the parser, along with definitions of
the constants that associate yacc-assigned `token
codes' with user-declared `token names'. Include
it in source files other than y.tab.b to give
access to the token codes and the parser module.
-s stem Change the prefix `y' of the file names y.tab.b,
y.tab.m, y.debug, and y.output to stem.
-m Normally yacc defines the type of the y.tab.b
Page 1 Plan 9 (printed 11/4/25)
YACC(1) YACC(1)
module within the text of the module according to
the contents of the %module directive. Giving
the -m option suppresses this behaviour, leaving
the implementation free to define the module's
type from an external .m file. The module's type
name is still taken from the %module directive.
-n size Specify the initial size of the token stack cre-
ated for the parser (default: 200).
Differences from C yacc
The Limbo yacc is in many respects identical to the C yacc.
The differences are summarised below:
Comments follow the Limbo convention (a # symbol gives a
comment until the end of the line).
A %module directive is required, which replaces the %union
directive. It is of the form:
%module modname {
module types, functions and constants
}
Modname will be the module's implementation type; the body
of the directive, augmented with con definitions for the
yacc-assigned token codes, gives the type of the module,
unless the -m option is given, in which case no module defi-
nition is emitted.
A type YYSTYPE must be defined, giving the type associated
with yacc tokens. If the angle bracket construction is used
after any of the %token, %left, %right, %nonassoc or %type
directives in order to associate a type with a token or pro-
duction, the word inside the angle brackets refers to a mem-
ber of an instance of YYSTYPE, which should be an adt.
An adt YYLEX must be defined, providing context to the
parser. The definition must consist of at least the follow-
ing:
YYLEX: adt {
lval: YYSTYPE;
lex: fn(l: self ref YYLEX): int;
error: fn(l: self ref YYLEX, msg: string);
}
Lex should invoke a lexical analyser to return the next
token for yacc to analyse. The value of the token should be
left in lval. Error will be called when a parse error
occurs. Msg is a string describing the error.
Yyparse takes one argument, a reference to the YYLEX adt
that will be used to provide it with tokens.
Page 2 Plan 9 (printed 11/4/25)
YACC(1) YACC(1)
The parser is fully re-entrant; i.e. it does not hold any
parse state in any global variables within the module.
EXAMPLE
The following is a small but complete example of the use of
Limbo yacc to build a simple calculator.
%{
include "sys.m";
sys: Sys;
include "bufio.m";
bufio: Bufio;
Iobuf: import bufio;
include "draw.m";
YYSTYPE: adt { v: real; };
YYLEX: adt {
lval: YYSTYPE;
lex: fn(l: self ref YYLEX): int;
error: fn(l: self ref YYLEX, msg: string);
};
%}
%module Calc{
init: fn(ctxt: ref Draw->Context, args: list of string);
}
%left '+' '-'
%left '*' '/'
%type <v> exp uexp term
%token <v> REAL
%%
top :
| top '\n'
| top exp '\n'
{
sys->print("%g\n", $2);
}
| top error '\n'
;
exp : uexp
| exp '*' exp { $$ = $1 * $3; }
| exp '/' exp { $$ = $1 / $3; }
| exp '+' exp { $$ = $1 + $3; }
| exp '-' exp { $$ = $1 - $3; }
;
uexp : term
Page 3 Plan 9 (printed 11/4/25)
YACC(1) YACC(1)
| '+' uexp { $$ = $2; }
| '-' uexp { $$ = -$2; }
;
term : REAL
| '(' exp ')'
{
$$ = $2;
}
;
%%
in: ref Iobuf;
stderr: ref Sys->FD;
init(nil: ref Draw->Context, nil: list of string)
{
sys = load Sys Sys->PATH;
bufio = load Bufio Bufio->PATH;
in = bufio->fopen(sys->fildes(0), Bufio->OREAD);
stderr = sys->fildes(2);
lex := ref YYLEX;
yyparse(lex);
}
YYLEX.error(nil: self ref YYLEX, err: string)
{
sys->fprint(stderr, "%s\n", err);
}
YYLEX.lex(lex: self ref YYLEX): int
{
for(;;){
c := in.getc();
case c{
' ' or '\t' =>
;
'-' or '+' or '*' or '/' or '\n' or '(' or ')' =>
return c;
'0' to '9' or '.' =>
s := "";
i := 0;
s[i++] = c;
while((c = in.getc()) >= '0' && c <= '9' ||
c == '.' ||
c == 'e' || c == 'E')
s[i++] = c;
in.ungetc();
lex.lval.v = real s;
return REAL;
* =>
Page 4 Plan 9 (printed 11/4/25)
YACC(1) YACC(1)
return -1;
}
}
}
FILES
y.output
y.tab.b
y.tab.m
y.debug
/lib/yaccpar parser prototype
SOURCE
/appl/cmd/yacc.b
SEE ALSO
S. C. Johnson and R. Sethi, ``Yacc: A parser generator'',
Unix Research System Programmer's Manual, Tenth Edition,
Volume 2
B. W. Kernighan and Rob Pike, The UNIX Programming Environ-
ment, Prentice Hall, 1984
BUGS
The parser may not have full information when it writes to
y.debug so that the names of the tokens returned by `yylex'
may be missing.
Page 5 Plan 9 (printed 11/4/25)